Cat Hygiene and Grooming
Can Cats Eat Bones?July 29, 2023
Kittens come in a rainbow of colours and it can sometimes be confusing when a kitten is born to two parents who didn’t have the same coat colour, for example, two solid cats produce a pointed kitten or two black cats produce a grey kitten or two shorthaired cats produce a longhaired kitten.
It is not uncommon for a litter to contain kittens who are all different colours. This variation in colours and patterns comes down to several genes which determine how each kitten will look.
A gene is a small section of DNA that is located on thread-like structures called chromosomes which are made up of DNA and come in matching pairs, one from the mother and the other from the father. Chromosomes are present in every cell in the body. Each gene has a fixed location (loci) on its chromosome which helps to specify a certain trait, for example, coat length, eye colour, and hair colour.
Each location can contain different genes, and there is no fixed limit to the number of alternative genes that may occupy a locus. But each cat will only have two genes at a time.
Cats display a huge number of coat colours, but there are only two pigments that determine coat colour. Eumelanin (black) and pheomelanin (red). White is omitted because it is not a colour, but a lack of colour.
Any other coat colour is a variation of these two pigments due to genetic mutations or modifier genes.
Many genes can impact the coat colour and pattern a cat exhibits (phenotype), which may be dominant or recessive.
A dominant gene overrides the different variants on the same gene, and a recessive gene is a gene that can be masked by a dominant gene. For example, a cat may be black but carry the recessive blue gene (Bb). If that cat mated with another cat who also carried the recessive blue gene and the offspring inherited both copies, the kitten would be blue (bb).
A dominant gene is represented with an UPPERCASE letter, and a recessive gene is in lowercase. Remember, the cat has two copies of each gene, one from the mother and one from the father.
How these genes are passed on to the next generation:
Kittens display coat colour inherited from the mother or father, but in the case of female cats who inherit the red (O) gene from one parent and the black (B) gene from another, she can display both colours (B/O) at the same time, this pattern is known as tortoiseshell, or if the cat has the white spotting gene as well, calico.
Why only females? Because the O is carried on the X chromosome (which makes it sex-linked) and as females have two X chromosomes (XX) they can show both black and orange. The random colour pattern is due to X inactivation which silences one of the copies in each cell to ensure the female only has one functional copy of each gene in each cell. As males (XY) only have one X chromosome, they will either be black or red but not both. So, we know that a tortoiseshell cat has one black parent and one red parent.
Let’s take a look at the four kittens in the photo above. We have a tortie and white, a black and white, a blue and white and another black and white.
Assuming this litter all shares the same father, the parents would be:
Outcome
The tabby gene is known as agouti (A) and is dominant over non-agouti or solid cats (a). The wild-type gene for the domestic coat colour and pattern is a brown tabby. All cats are tabby, but the tabby pattern is masked in solid coloured cats. You can sometimes see ‘ghosting’ on a bright day or in young kittens.
As if coat colour genetics isn’t confusing enough, a litter of kittens may also have more than one father as a female cat in heat will mate with one male if given the opportunity. This is known as superfecundation.
Between dominant genes, modifier genes, white spotting, and different fathers, no wonder kittens in a litter can have a variety of coat colours.
Determining what colour potential kittens will be used to boil down to some genetics knowledge, test matings and with modern advancements, DNA tests to determine what coat colour a cat is and if it carries recessive genes.